References
-
Hsueh, C. C. et al. Feasibility study of value-added production from onion peel agricultural wastes for circular economy. J. Taiwan. Inst. Chem. Eng. 145, https://doi.org/10.1016/j.jtice.2023.104851 (2023).
-
Magama, P., Chiyanzu, I. & Mulopo, J. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresour Technol. Rep. 18, 101031. https://doi.org/10.1016/J.BITEB.2022.101031 (2022).
-
Koul, B., Yakoob, M. & Shah, M. P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 206, 112285. https://doi.org/10.1016/J.ENVRES.2021.112285 (2022).
-
FAO. World Food and Agriculture – Statistical Yearbook 2021 (FAO, 2022). https://doi.org/10.4060/cb4477en
-
Bolaji, I. et al. Multi-criteria decision analysis of agri-food waste as a feedstock for biopolymer production. Resour. Conserv. Recycl. 172, 105671. https://doi.org/10.1016/J.RESCONREC.2021.105671 (2021).
-
Mounir, R. et al. Unlocking the Power of Onion Peel Extracts: Antimicrobial and Anti-Inflammatory Effects Improve Wound Healing through Repressing Notch-1/NLRP3/Caspase-1 Signaling. Pharmaceuticals (Basel) 16, https://doi.org/10.3390/PH16101379 (2023).
-
Benítez, V. et al. Characterization of industrial onion wastes (Allium Cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 66, 48–57. https://doi.org/10.1007/S11130-011-0212-X/TABLES/5 (2011).
-
Rose, P., Whiteman, M., Moore, P. K. & Yi, Z. Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep. 22, 351–368. https://doi.org/10.1039/B417639C (2005).
-
Cebin, A. V., Šeremet, D., Mandura, A., Martinić, A. & Komes, D. Onion solid waste as a potential source of functional food ingredients. Eng. Power: Bull. Croatian Acad. Eng. 15, 7–13 (2020).
-
Azmat, F. et al. Valorization of the phytochemical profile, nutritional composition, and therapeutic potentials of Garlic peel: a concurrent review. Int. J. Food Prop. 26, 2642–2655. https://doi.org/10.1080/10942912.2023.2251713 (2023).
-
Shahzad, M. et al. Effect of Garlic consumption on hyperlipidemia patients: observational cohort study. J. Popul. Ther. Clin. Pharmacol. 30, 1635–1643. https://doi.org/10.53555/JPTCP.V30I17.2771 (2023).
-
Falcón-Piñeiro, A. et al. PTS and PTSO, two organosulfur compounds from onion by-products as a novel solution for plant disease and pest management. Chem. Biol. Technol. Agric. 10, 76. https://doi.org/10.1186/s40538-023-00452-1 (2023).
-
Singiri, J. R., Swetha, B., Ben-Natan, A. & Grafi, G. What worth the Garlic Peel. Int. J. Mol. Sci. 23. https://doi.org/10.3390/ijms23042126 (2022).
-
Seleiman, M. F. et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10, 1–25. https://doi.org/10.3390/PLANTS10020259 (2021).
-
Biswas, A. et al. Water scarcity: A global hindrance to sustainable development and agricultural production – A critical review of the impacts and adaptation strategies. Camb. Prisms: Water. 3, e4. https://doi.org/10.1017/wat.2024.16 (2025).
-
Mi, J., Gregorich, E. G., Xu, S., Mclaughlin, N. B. & Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. (2020). https://doi.org/10.1038/s41598-020-75350-9
-
Prins, F. X., Etale, A., Ablo, A. D. & Thatcher, A. Water scarcity and alternative water sources in South Africa: can information provision shift perceptions? Urban Water J. 20, 1438–1449. https://doi.org/10.1080/1573062X.2022.2026984 (2023).
-
Quon, H. & Jiang, S. Decision making for implementing non-traditional water sources: a review of challenges and potential solutions. Npj Clean. Water 2023. 6 (1), 6:1–14. https://doi.org/10.1038/s41545-023-00273-7 (2023).
-
Abdallah, A. M. et al. Conservation agriculture effects on soil water holding capacity and water-Saving varied with management practices and agroecological conditions: A Review. Agronomy 2021. Page 1681. 11, 11:1681. https://doi.org/10.3390/AGRONOMY11091681 (2021).
-
Williams, A. et al. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: time to invest in soil organic matter? PLoS One. 11, e0160974. https://doi.org/10.1371/JOURNAL.PONE.0160974 (2016).
-
Lal, R. Soil organic matter and water retention. Agron. J. 112, 3265–3277. https://doi.org/10.1002/AGJ2.20282 (2020).
-
Libohova, Z. et al. Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National cooperative soil survey characterization database. J. Soil. Water Conserv. 73, 411–421. https://doi.org/10.2489/JSWC.73.4.411 (2018).
-
Lal, R. Anthropogenic influences on world soils and implications to global food security. Adv. Agron. 93 (SUPPL.), 69–93. https://doi.org/10.1016/S0065-2113(06)93002-8 (2007).
-
Mohapatra, P. K. & Sahu, B. B. Importance of rice as human Food. Panicle architecture of rice and its relationship with grain filling. ; 1–25. (2022). https://doi.org/10.1007/978-3-030-67897-5_1
-
Bin Rahman, A. N. M. R. & Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 12, https://doi.org/10.1002/FES3.390 (2023).
-
Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol (Tokyo). https://doi.org/10.3177/JNSV.65.S2 (2019). 65 Supplement:S2–3.
-
Mohidem, N. A., Hashim, N., Shamsudin, R. & Che Man, H. Rice for food security: revisiting its Production, Diversity, rice milling process and nutrient content. Agriculture 12, 741. https://doi.org/10.3390/AGRICULTURE12060741 (2022).
-
Bahnasawy, A. H., El-Haddad, Z. A., El-Ansary, M. Y. & Sorour, H. M. Physical and mechanical properties of some Egyptian onion cultivars. J. Food Eng. 62, 255–261. https://doi.org/10.1016/S0260-8774(03)00238-3 (2004).
-
Ragheb, E. I. & Helmy, E. M. Behavior of new and promising Egyptian Garlic clones resulting from clonal selection program. J. Plant. Prod. 12, 1255–1260. https://doi.org/10.21608/JPP.2021.209338 (2021).
-
Chia, P. W., Lim, B. S., Tan, K. C., Yong, F. S. J. & Kan, S. Y. Water extract of onion Peel for the synthesis of bisindolylmethanes. J. King Saud Univ. Sci. 31, 642–647. https://doi.org/10.1016/J.JKSUS.2018.05.029 (2019).
-
Park, B. B., Yanai, R. D., Sahm, J. M., Ballard, B. D. & Abrahamson, L. P. Wood Ash effects on soil solution and nutrient budgets in a Willow bioenergy plantation. Water Air Soil. Pollut. 159, 209–224. https://doi.org/10.1023/B:WATE.0000049177.60761.37/METRICS (2004).
-
AOAC International. Official Methods of Analysis, 22nd Edition. (2023).
-
Loewus, F. A. Improvement in anthrone method for determination of carbohydrates. Anal. Chem. 24, 219. https://doi.org/10.1021/AC60061A050/ASSET/AC60061A050.FP.PNG_V03 (1952).
-
Massoumi, A. & Cornfield, A. H. A rapid method for determining sulphate. Water Extracts Soils. 7, 22 (1963).
-
Lowry, O., Rosebrough, N., Farr, A. & Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).
-
Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 (1999).
-
Zhishen, J., Mengcheng, T. & Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2 (1999).
-
Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341. https://doi.org/10.1006/ABIO.1999.4019 (1999).
-
FAO. Standard operating procedure for soil moisture content by gravimetric method. (2023).
-
Nigam, A., Gupta, R. & Air Water and soil. Environ. Anal. Lab. Handb. 1–20. https://doi.org/10.1002/9781119724834.CH1 (2020).
-
Abo-Yousef, M. I. et al. Giza 179 Egyptian rice variety: as a new, early, high-yielding, tolerant to saline, and climate change challenge. J. Agric. Res. 100, 567–588. https://doi.org/10.21608/ejar.2023.196433.1374 (2023).
-
Metzner, H., Rau, H. & Senger, H. Studies on synchronization of some pigment-deficient Chlorella mutants. Planta 65, 186–194. https://doi.org/10.1007/BF00384998/METRICS (1965).
-
Barrs, H. & Weatherley, P. A Re-Examination of the relative turgidity technique for estimating water deficits in leaves. Aust J. Biol. Sci. 15, 413. https://doi.org/10.1071/BI9620413 (1962).
-
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207. https://doi.org/10.1007/BF00018060/METRICS (1973).
-
Dhindsa, R. S., Plumb-dhindsa, P. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid Peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. https://doi.org/10.1093/JXB/32.1.93 (1981).
-
Velikova, V. Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines, Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1. 2000.
-
Sedlak, J. & Lindsay, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with ellman’s reagent. Anal. Biochem. 25, 192–205. https://doi.org/10.1016/0003-2697(68)90092-4 (1968).
-
Qiu, R. L., Zhao, X., Tang, Y. T., Yu, F. M. & Hu, P. J. Antioxidative response to cd in a newly discovered cadmium hyperaccumulator. Arabis Paniculata F Chemosphere. 74, 6–12. https://doi.org/10.1016/J.CHEMOSPHERE.2008.09.069 (2008).
-
Aebi, H. Catalase in vitro. Methods in enzymol. (1984).
-
Maehly, A. C. & Chance, B. The assay of catalases and peroxidases. Methods Biochem. Anal. 1, 357–424. https://doi.org/10.1002/9780470110171.CH14 (1954).
-
Beyer, W. F. & Fridovich, I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161, 559–566. https://doi.org/10.1016/0003-2697(87)90489-1 (1987).
-
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by Ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880. https://doi.org/10.1093/OXFORDJOURNALS.PCP.A076232 (1981).
-
Pastore, D. et al. Inhibition by α-Tocopherol and L-Ascorbate of linoleate hydroperoxidation and β-Carotene bleaching activities in durum wheat semolina. J. Cereal Sci. 31, 41–54. https://doi.org/10.1006/JCRS.1999.0278 (2000).
-
Clarke, J. D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. 4 https://doi.org/10.1101/PDB.PROT5177 (2009).
-
Soliman, E. R. S., El-Shazly, H. H., Börner, A. & Badr, A. Genetic diversity of a global collection of maize genetic resources in relation to their subspecies assignments, geographic origin, and drought tolerance. Breed. Sci. 71, 313–325. https://doi.org/10.1270/jsbbs.20142 (2021).
-
Chadorshabi, S., Hallaj-Nezhadi, S. & Ghasempour, Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem. 386, 132737. https://doi.org/10.1016/J.FOODCHEM.2022.132737 (2022).
-
Ullah, H. et al. In vitro bioaccessibility and Anti-Inflammatory activity of a chemically characterized Allium Cepa L. Extract rich in Quercetin derivatives optimized by the design of experiments. Molecules 27, 9065. https://doi.org/10.3390/MOLECULES27249065/S1 (2022).
-
Lee, B. K. & Jung, Y. S. Allium Cepa extract and Quercetin protect neuronal cells from oxidative stress via PKC- ϵ Inactivation/ERK1/2 activation. Oxid. Med. Cell. Longev. 2016 https://doi.org/10.1155/2016/2495624 (2016).
-
Masood, S. et al. Antioxidant potential and α-glucosidase inhibitory activity of onion (Allium cepa L.) Peel and bulb extracts. Brazilian J. Biology 83, https://doi.org/10.1590/1519-6984.247168 (2023).
-
Betti, G., Grant, C., Murray, R. & Research, G. C. S. Research GC-S, 2016 undefined. Size of subsoil clods affects soil-water availability in sand–clay mixtures. Soil Research 54, 276–290 (2016).
-
Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90, 735–764. https://doi.org/10.1016/J.CARBPOL.2012.05.026 (2012).
-
Lindh, E. L., Bergenstråhle-Wohlert, M., Terenzi, C., Salmén, L. & Furó, I. Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr. Res. 434, 136–142. https://doi.org/10.1016/J.CARRES.2016.09.006 (2016).
-
Cherednichenko, K. et al. A facile One-Step synthesis of Polystyrene/Cellulose (PS@MFC) biocomposites for the Preparation of hybrid Water-Absorbing sponge Materials. Polymers 2023. Page 4328. 15, 15:4328. https://doi.org/10.3390/POLYM15214328 (2023).
-
Bhandari, U. et al. Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon 9, https://doi.org/10.1016/J.HELIYON.2023.E13744 (2023).
-
El-Okkiah, S. A. F. et al. Foliar spray of silica improved water stress tolerance in rice (Oryza sativa L.) cultivars. Front. Plant. Sci. 13, https://doi.org/10.3389/fpls.2022.935090 (2022).
-
Hussain, H. A. et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant. Sci. 9, 348835. https://doi.org/10.3389/FPLS.2018.00393/BIBTEX (2018).
-
Zhou, L. et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 338, 269–280. https://doi.org/10.1016/J.GEODERMA.2018.12.014 (2019).
-
Mishra, S. S., Behera, P. K. & Panda, D. Genotypic variability for drought tolerance-related morpho-physiological traits among Indigenous rice landraces of Jeypore tract of Odisha, India. J. Crop Improv. 33, 254–278. https://doi.org/10.1080/15427528.2019.1579138 (2019).
-
Zhu, R. et al. Cumulative effects of drought–flood abrupt alternation on the photosynthetic characteristics of rice. Environ. Exp. Bot. 169, 103901. https://doi.org/10.1016/J.ENVEXPBOT.2019.103901 (2020).
-
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustainable Dev. 2009. 29 (1), 29:185–212. https://doi.org/10.1051/AGRO:2008021 (2009).
-
Mishra, S. S., Behera, P. K., Kumar, V., Lenka, S. K. & Panda, D. Physiological characterization and allelic diversity of selected drought tolerant traditional rice (Oryza sativa L.) landraces of Koraput, India. Physiol. Mol. Biol. Plants. 24, 1035–1046. https://doi.org/10.1007/S12298-018-0606-4 (2018).
-
Mishra, S. S. & Panda, D. Leaf traits and antioxidant defense for drought tolerance during early growth stage in some popular traditional rice landraces from Koraput, India. Rice Sci. 24, 207–217. https://doi.org/10.1016/J.RSCI.2017.04.001 (2017).
-
Ifesan, B. O. T. Chemical composition of onion Peel (Allium cepa) and its ability to serve as a preservative in cooked beef. Int. J. Sci. Res. Methodol. 7, 25–34 (2017).
-
Patil, M., Jana, P. & Murumkar, C. Effect of onion and Garlic Biowaste on germination and growth of microgreens. Int. J. Sci. Rep. 7, 302–305. https://doi.org/10.18203/ISSN.2454-2156.INTJSCIREP20211951 (2021).
-
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614 (2020).
-
Abdelhameed, R. E. & Metwally, R. A. Role of B. velezensis RaSh2 inoculation on enhancing Cowpea (Vigna unguiculata L.) plants grown under drought conditions. Plant. Growth Regul. https://doi.org/10.1007/s10725-025-01384-6 (2025).
-
Abdelhameed, R. E., Gahin, H. & Metwally, R. A. Kinetin and arbuscular mycorrhizal fungi: vital regulators of Vicia Faba plantsʼ response and tolerance to drought stress. BMC Plant. Biol. https://doi.org/10.1186/s12870-025-07260-9 (2025).
-
Lei, D., Li, Y., Yong, L., Shen, Q. & Guo, S. Effects of drought stress on photosynthesis and water status of rice leaves.Chin. J. Rice Sci. 28 65-70 DOI: https://doi.org/10.3969/j.issn.1001-7216.2014.01.009 (2014).
-
Akram, H. M., Ali, A., Sattar, A., Rehman, H. S. U. & Bibi, A. Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) cultivars. J. Anim. Plant. Sci. 23, 1415–1423 (2013).
-
El-Serafy, R. S., El-Sheshtawy, A. N. A. & Dahab, A. A. Fruit Peel soil supplementation induces physiological and biochemical tolerance in Schefflera Arboricola L. Grown under heat conditions. J. Soil. Sci. Plant. Nutr. 23, 1046–1059. https://doi.org/10.1007/S42729-022-01102-5/FIGURES/7 (2023).
-
Faize, M. et al. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot. 62, 2599–2613. https://doi.org/10.1093/jxb/erq432 (2011).
-
Juan, C. A., de la Lastra, J. M. P., Plou, F. J. & Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 22. https://doi.org/10.3390/IJMS22094642 (2021).
-
Upadhyaya, H. & Panda, S. K. Drought stress responses and its management in rice. Advances in rice research for abiotic stress tolerance. ;:177–200. (2019). https://doi.org/10.1016/B978-0-12-814332-2.00009-5
-
Rezayian, M., Ebrahimzadeh, H. & Niknam, V. Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. J. Soil. Sci. Plant. Nutr. 20, 1122–1132. https://doi.org/10.1007/S42729-020-00198-X (2020).
-
Rhodes, D. & Samaras, Y. Genetic control of osmoregulation in plants. Cell. Mol. Physiol. Cell. Volume Regul. 347–361. https://doi.org/10.1201/9780367812140-25 (2020).
-
Abdelhameed, R. E., Soliman, E. R. S., Gahin, H. & Metwally, R. A. Enhancing Drought Tolerance in Malva Parviflora Plants Through Metabolic and Genetic Modulation Using Beauveria Bassiana Inoculation. BMC Plant Biol. 24 662 https://doi.org/10.1186/s12870-024-05340-w (2024).
-
Vajrabhaya, M., Kumpun, W. & Chadchawan, S. The solute accumulation: the mechanism for drought tolerance in RD23 rice (Oryza sativa L) lines. ScienceAsia 27, 93–97 (2001).
-
Lum, M. S., Hanafi, M. M., Rafii, Y. M. & Akmar, A. S. N. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J. Anim. Plant. Sci. 24, 1487–1493 (2014).
-
Hayat, S. et al. Role of proline under changing environments: a review. Plant. Signal. Behav. 7. https://doi.org/10.4161/PSB.21949 (2012).
-
Fahramand, M., Mahmoody, M., Keykha, A., Noori, M. & Rigi, K. Influence of abiotic stress on proline, photosynthetic enzymes and growth. Int. Res. J. Appl. Basic. Sci. 8, 257–265 (2014).
-
Bhoomika, K., Pyngrope, S. & Dubey, R. S. Effect of aluminum on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminum tolerance. J. Plant. Physiol. 171, 497–508. https://doi.org/10.1016/J.JPLPH.2013.12.009 (2014).
-
Dey, N., Bhattacharyya, T. & Bhattacharjee, S. Decoding the impact of drought stress induced Redox-Metabolic shift in flag leaf during Grain-Filling stage on kernel aroma quality and productivity in some Indigenous aromatic rice cultivars of West Bengal, India. J. Plant. Growth Regul. 42, 7673–7704. https://doi.org/10.1007/S00344-023-11042-8/METRICS (2023).
-
Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biology Plants 2017 23:2. 23, 249–268. https://doi.org/10.1007/S12298-017-0422-2 (2017).
-
Wang, F. Z., Wang, Q., Bin, Kwon, S. Y., Kwak, S. S. & Su, W. A. Enhanced drought tolerance of Transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant. Physiol. 162, 465–472. https://doi.org/10.1016/J.JPLPH.2004.09.009 (2005).
-
Selote, D. S. & Khanna-Chopra, R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol. Plant. 121, 462–471. https://doi.org/10.1111/J.1399-3054.2004.00341.X (2004).
-
Gomaa Shehab, G., Kansowa Ahmed, O. & Saad El-Betagi, H. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L). Not Bot. Horti Agrobot Cluj Napoca. 38, 139–148. https://doi.org/10.15835/NBHA3813627 (2010).
-
Li, X., Zhang, L. & Li, Y. Preconditioning alters antioxidative enzyme responses in rice seedlings to water stress. Procedia Environ. Sci. 11 PART C, 1346–1351. https://doi.org/10.1016/J.PROENV.2011.12.202 (2011).
-
Hasanuzzaman, M. & Fujita, M. Plant oxidative stress: Biology, physiology and mitigation. Plants (Basel). 11. https://doi.org/10.3390/PLANTS11091185 (2022).
-
Mohamed, H., El-Bassiouny, S., Abdallah, M-S., Bakry, B. A. & Ibrahim, F. M. Effect of orange Peel extract or ascorbic acid on Growth, yield and some biochemical aspects of Quinoa plants under water deficit. Int. J. Pharmtech Res. 9, 86–96 (2016).
-
Reddy, R. A., Chaitanya, K. V., Jutur, P. P. & Sumithra, K. Differential antioxidative responses to water stress among five mulberry (Morus Alba L.) cultivars. Environ. Exp. Bot. 52, 33–42. https://doi.org/10.1016/J.ENVEXPBOT.2004.01.002 (2004).
-
Soliman, E. R. S. & Soliman, M. S. A. Diversity assessment by molecular barcoding and seed morphology in Ricinus communis L. Baghdad Sci. J. 18, 708–715. https://doi.org/10.21123/BSJ.2021.18.1(SUPPL.).0708 (2021).
-
Badr, A. et al. Plant Responses to Induced Genotoxicity and Oxidative Stress by Chemicals. Induced Genotoxicity and Oxidative Stress in Plants. 103–131. (2021). https://doi.org/10.1007/978-981-16-2074-4_4
-
Dubey, R. K., Upadhyay, G., Singh, V. & Pandey, S. Antioxidant potential and free radical scavenging activity of Parkia roxburghii, G. Don, a lesser known leguminous tree from North East India. South. Afr. J. Bot. 131, 454–461. https://doi.org/10.1016/j.sajb.2020.03.013 (2020).
-
Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107. https://doi.org/10.1007/S00442-019-04371-7 (2019).
