References
-
Sen, C. K. et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771 (2009).
-
National Burn Awareness Week and Workers’ Compensation | Paradigm. https://www.paradigmcorp.com/insights/burn-awareness-week-2022-paradigm/.
-
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).
-
Reynolds, D. & Kollef, M. The epidemiology and pathogenesis and treatment of pseudomonas aeruginosa infections: an update. Drugs 81, 2117–2131 (2021).
-
Bertesteanu, S. et al. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int. J. Pharm. 463, 119–126 (2014).
-
Ladhani, H. A., Yowler, C. J. & Claridge, J. A. Burn wound colonization, infection, and sepsis. Surg. Infect. 22, 44–48 (2021).
-
Manoharan Nair Sudha Kumari, S. & Thankappan Suryabai, X. Sensing the future─frontiers in biosensors: exploring classifications, principles, and recent advances. ACS Omega 9, 48918–48987 (2024).
-
Teixeira, W. et al. An all-in-one point-of-care testing device for multiplexed detection of respiratory infections. Biosens. Bioelectron. 213, 1–7 (2022).
-
Wang, C. et al. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today 37, 101092 (2021).
-
Moeinfard, T., Ghafar-Zadeh, E. & Magierowski, S. CMOS point-of-care diagnostics technologies: recent advances and future prospects. Micromachines 15, 1–28 (2024).
-
Arcangeli, D. et al. Smart bandaid integrated with fully textile OECT for uric acid real-time monitoring in wound exudate. ACS Sens. 8, 1593–1608 (2023).
-
Annemans, L. et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000-2005. Ann. Rheum. Dis. 67, 960–966 (2008).
-
VanDrisse, C. M., Lipsh-Sokolik, R., Khersonsky, O., Fleishman, S. J. & Newman, D. K. Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 118, e2022012118 (2021).
-
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science (1979) 284, 1318–1322 (1999).
-
Zhou, K., Kammarchedu, V., Butler, D., Soltan Khamsi, P. & Ebrahimi, A. Electrochemical sensors based on MoSx-functionalized laser-induced graphene for real-time monitoring of phenazines produced by pseudomonas aeruginosa. Adv. Health Mater. 11, 2200773 (2022).
-
Parsons, J. F. et al. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46, 1821–1828 (2007).
-
Muller, M., Li, Z. & Maitz, P. K. M. Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35, 500–508 (2009).
-
Truong-Bolduc, Q. C. et al. Phenazine-1 carboxylic acid of Pseudomonas aeruginosa induces the expression of Staphylococcus aureus Tet38 MDR efflux pump and mediates resistance to phenazines and antibiotics. Antimicrob. Agents Chemother. 68, e0063624 (2024).
-
Chukwubuikem, A., Berger, C., Mady, A. & Rosenbaum, M. A. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Microb. Biotechnol. 14, 1613–1626 (2021).
-
Mahmoud, N. N. et al. Investigating Inflammatory Markers in Wound Healing: Understanding Implications and Identifying Artifacts. ACS Pharm. Transl. Sci. 7, 18–27 (2024).
-
Huang, L. et al. Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cell Mol. Immunol. 17, 1092–1094 (2020).
-
Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).
-
Kobayashi, T., Iwatani, S., Hirata, A., Yamamoto, M. & Yoshimoto, S. Rapid changes in serum IL-6 levels in preterm newborns with Gram-negative early-onset sepsis. Cytokine 138, 155371 (2021).
-
Battaglia, T. M. et al. Quantification of cytokines involved in wound healing using surface plasmon resonance. Anal. Chem. https://doi.org/10.1021/ac050568w (2005).
-
Reinhart, K., Meisner, M. & Brunkhorst, F. M. Markers for sepsis diagnosis: What is useful?. Crit. Care Clin. 22, 503–519 (2006).
-
Bloos, F. & Reinhart, K. Rapid diagnosis of sepsis. Virulence 5, 154–160 (2014).
-
Bennison, L. et al. The pH of wounds during healing and infection: a descriptive literature review. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 25, 63–69 (2017).
-
Blicharz, T. M. et al. Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: a proof of principle. Clin. Chem. 54, 1473–1480 (2008).
-
Pal, J. & Pal, T. Enzyme mimicking inorganic hybrid Ni@MnO2 for colorimetric detection of uric acid in serum samples. RSC Adv. 6, 83738–83747 (2016).
-
Zhou, S. et al. An eco-friendly hydrophilic interaction HPLC method for the determination of renal function biomarkers, creatinine and uric acid, in human fluids. Anal. Methods 5, 1307–1311 (2013).
-
Jen, J.-F., Hsiao, S.-L. & Liu, K.-H. Simultaneous determination of uric acid and creatinine in urine by an eco-friendly solvent-free high performance liquid chromatographic method. Talanta 58, 711–717 (2002).
-
Zhao, J. A simple, rapid and reliable high performance liquid chromatography method for the simultaneous determination of creatinine and uric acid in plasma and urine. Anal. Methods 5, 6781–6787 (2013).
-
Villageliú, D. & Lyte, M. Dopamine production in Enterococcus faecium: a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS ONE 13, 1–10 (2018).
-
Costa, K. C., Moskatel, L. S., Meirelles, L. A. & Newman, D. K. PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in Mycobacterium fortuitum. J. Bacteriol. 200, 1–10 (2018).
-
DeBritto, S. et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1–12 (2020).
-
Dwivedi, S., AlKhedhairy, A. A., Ahamed, M. & Musarrat, J. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay. PLoS ONE 8, 1–10 (2013).
-
Iloabuchi, K. & Spiteller, D. Bacillus sp. G2112 detoxifies phenazine-1-carboxylic acid by N5 glucosylation. Molecules 29, 1–18 (2024).
-
El-Fouly, M. Z., Sharaf, A. M., Shahin, A. A. M., El-Bialy, H. A. & Omara, A. M. A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 8, 36–48 (2015).
-
Heydorn, A. et al. Experimental reproducibility in flow-chamber biofilms. Microbiology 146, 2409–2415 (2000).
-
Helle, M., Boeije, L., de Groot, E., de Vos, A. & Aarden, L. Sensitive ELISA for interleukin-6. Detection of IL-6 in biological fluids: synovial fluids and sera. J. Immunol. Methods 138, 47–56 (1991).
-
Luo, L., Zhang, Z., Hou, L., Wang, J. & Tian, W. The study of a chemiluminescence immunoassay using the peroxyoxalate chemiluminescent reaction and its application. Talanta 72, 1293–1297 (2007).
-
Ghoneim, M. T. et al. Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chem. Rev. 119, 5248–5297 (2019).
-
Wang, C. et al. Wound management materials and technologies from bench to bedside and beyond. Nat. Rev. Mater. 9, 550–566 (2024).
-
Huang, S. W., Wu, Y. F., Ahmed, T., Pan, S. C. & Cheng, C. M. Point-of-care detection devices for wound care and monitoring. Trends Biotechnol. 42, 74–90 (2024).
-
Youssef, K., Ullah, A., Rezai, P., Hasan, A. & Amirfazli, A. Recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds. Mater. Today Bio 22, 100764 (2023).
-
Pang, Q. et al. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Mater. Des. 229, 111917 (2023).
-
Vo, D.-K. & Trinh, K. T. L. Advances in wearable biosensors for wound healing and infection monitoring. Biosensors 15, 139 (2025).
-
Gupta, E. et al. Fast track diagnostic tools for clinical management of sepsis: paradigm shift from conventional to advanced methods. Diagnostics 13, 1–23 (2023).
-
Li, S., Renick, P., Senkowsky, J., Nair, A. & Tang, L. Diagnostics for wound infections. Adv. Wound Care 10, 317–327 (2021).
-
Galliani, M. et al. Flexible printed organic electrochemical transistors for the detection of uric acid in artificial wound exudate. Adv. Mater. Interfaces 7, 1–7 (2020).
-
Kaewpradub, K., Veenuttranon, K., Jantapaso, H., Mittraparp-arthorn, P. & Jeerapan, I. A Fully-printed wearable bandage-based electrochemical sensor with ph correction for wound infection monitoring. Nanomicro. Lett. 17, 1–21 (2025).
-
Dou, C. et al. Au-functionalized wrinkle graphene biosensor for ultrasensitive detection of Interleukin-6. Carbon 216, 118556 (2024).
-
Kumar, M. A., Jayavel, R., Mahalingam, S., Kim, J. & Atchudan, R. Detection of interleukin-6 protein using graphene field-effect transistor. Biosensors 13, 834 (2023).
-
Hwang, M. T. et al. Ultrasensitive detection of dopamine, IL-6 and SARS-CoV-2 proteins on crumpled graphene FET biosensor. Adv. Mater. Technol. 6, 2100712 (2021).
-
Meng, L., Liu, S., Borsa, B., Eriksson, M. & Mak, W. C. A conducting polymer-based array with multiplex sensing and drug delivery capabilities for smart bandages. Commun. Mater. https://doi.org/10.1038/s43246-024-00469-5 (2024).
-
Sani, E. S. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, 1–16 (2023).
-
Movaghgharnezhad, S. & Kang, P. Laser-induced graphene: synthesis advances, structural tailoring, enhanced properties, and sensing applications. J. Mater. Chem. C Mater. 12, 6718–6742 (2024).
-
Aftab, S. et al. Laser-induced graphene for advanced sensing: comprehensive review of applications. ACS Sens. https://doi.org/10.1021/acssensors.4c01717 (2024).
-
Dixit, N. & Singh, S. P. Laser-induced graphene (LIG) as a smart and sustainable material to restrain pandemics and endemics: a perspective. ACS Omega 7, 5112–5130 (2022).
-
Cheng, L. et al. Flash healing of laser-induced graphene. Nat. Commun. 15, 1–11 (2024).
-
Shokurov, A. V. & Menon, C. Laser-induced graphene electrodes for electrochemistry education and research. J. Chem. Educ. 100, 2411–2417 (2023).
-
Le, T. S. D. et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 1–39 (2022).
-
Zhang, Z. et al. A review of laser-induced graphene: from experimental and theoretical fabrication processes to emerging applications. Carbon 214, 118356 (2023).
-
Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5–12 (2014).
-
Kammarchedu, V., Asgharian, H., Zhou, K., Soltan Khamsi, P. & Ebrahimi, A. Recent advances in graphene-based electroanalytical devices for healthcare applications. Nanoscale 16, 12857–12882 (2024).
-
Brustoloni, C. J. M., Soltan Khamsi, P., Kammarchedu, V. & Ebrahimi, A. Systematic study of various functionalization steps for ultrasensitive detection of SARS-CoV-2 with direct laser-functionalized Au-LIG electrochemical sensors. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.4c09571 (2024).
-
Albarghouthi, F. M. et al. Addressing signal drift and screening for detection of biomarkers with carbon nanotube transistors. ACS Nano https://doi.org/10.1021/acsnano.3c11679 (2023).
-
Garland, N. T. et al. Wearable flexible perspiration biosensors using laser-induced graphene and polymeric tape microfluidics. ACS Appl. Mater. Interfaces 15, 38201–38213 (2023).
-
Camargo, J. R. et al. Development of new simple compositions of silver inks for the preparation of pseudo-reference electrodes. Biosensors 12, 761 (2022).
-
Zdrachek, E. & Bakker, E. Potentiometric sensor array with multi-nernstian slope. Anal. Chem. 92, 2926–2930 (2020).
-
U.S. Food and Drug Administration. M10 Bioanalytical Method Validation and Study Sample Analysis. FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis (2022).
-
Huang, J., Fan, C., Ma, Y. & Huang, G. Exploring thermal dynamics in wound healing: the impact of temperature and microenvironment. Clin. Cosmet. Investig. Dermatol. 17, 1251–1258 (2024).
-
Asgharian, H., Kammarchedu, V., Soltan Khamsi, P., Brustoloni, C. & Ebrahimi, A. Multi-electrode extended gate field effect transistors based on laser-induced graphene for the detection of vitamin C and SARS-CoV-2. ACS Appl. Mater. Interfaces 16, 63142–63154 (2024).
-
Sheibani, S. et al. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun. Mater. 2, 1–10 (2021).
-
Asgharian, H., Khodayari, M., Rajabali, M. & Mohajerzadeh, S. Molecule-induced n-type behavior of phosphorene-based field-effect transistor for highly sensitive detection of sialic acid. Electrochim. Acta 469, 143228 (2023).
-
Rajabali, M. et al. Experimental and molecular dynamics studies of an ultra-fast sequential hydrogen plasma process for fabricating phosphorene-based sensors. Sci. Rep. 11, 1–13 (2021).
-
Könemund, L. et al. Functionalization of an extended-gate field-effect transistor (EGFET) for bacteria detection. Sci. Rep. 12, 1–10 (2022).
-
Kuo, P. Y., Chang, C. H., Lai, W. H. & Wang, T. H. The characteristics analysis of a microfluid-based EGFET biosensor with on-chip sensing film for lactic acid detection. Sensors 22, 5905 (2022).
-
Sharma, P. et al. Palladium-oxide extended gate field effect transistor as pH sensor. Mater. Lett. X 12, 100102 (2021).
-
Talley, K. & Alexov, E. On the pH-optimum of activity and stability of proteins. Proteins: Struct. Funct. Bioinform. 78, 2699–2706 (2010).
-
Ma, H., Ó’Fágáin, C. & O’Kennedy, R. Antibody stability: a key to performance—analysis, influences and improvement. Biochimie 177, 213–225 (2020).
-
Crone, S., Garde, C., Bjarnsholt, T. & Alhede, M. A novel in vitro wound biofilm model used to evaluate low-frequency ultrasonic-assisted wound debridement. J. Wound Care 24, 64–72 (2015).
-
Dang, W. et al. Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107, 192–202 (2018).
-
Dallinger, A., Steinwender, F., Gritzner, M. & Greco, F. Different roles of surface chemistry and roughness of laser-induced graphene: implications for tunable wettability. ACS Appl. Nano Mater. 6, 16201–16211 (2023).
-
Wirojsaengthong, S., Chailapakul, O., Tangkijvanich, P., Henry, C. S. & Puthongkham, P. Size-dependent electrochemistry of laser-induced graphene electrodes. Electrochim. Acta 494, 144452 (2024).
-
Nazeri, M., Ghalamboran, M. & Grau, G. Laser-induced graphene electrodes for organic electrochemical transistors (OECTs). Adv. Mater. Technol. 8, 1–13 (2023).
-
Liu, Z. et al. Dynamic laser speckle imaging meets machine learning to enable rapid antibacterial susceptibility testing (DYRAST). ACS Sens. 5, 3140–3149 (2020).
-
Behrent, A., Griesche, C., Sippel, P. & Baeumner, A. J. Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim. Acta 188, 159 (2021).
-
Kammarchedu, V., AlSiyabi, M. & Ebrahimi, A. Skin-conformal myography for real-time hand tracking using a laser-induced graphene strain sensor array. Adv. Intelli. Syst 7, 2400812 (2025).
-
Alnoush, W., Black, R. & Higgins, D. Judicious selection, validation, and use of reference electrodes for in situ and operando electrocatalysis studies. Chem. Catal. 1, 997–1013 (2021).
-
Maheshwari, P. H. Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation. Mater. Sci. Energy Technol. 2, 490–502 (2019).
