WoundMx: multiplexed detection of wound infection biomarkers with a multimodal sensor system based on laser-induced graphene

woundmx:-multiplexed-detection-of-wound-infection-biomarkers-with-a-multimodal-sensor-system-based-on-laser-induced-graphene
WoundMx: multiplexed detection of wound infection biomarkers with a multimodal sensor system based on laser-induced graphene

References

  1. Sen, C. K. et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771 (2009).

    Google Scholar 

  2. National Burn Awareness Week and Workers’ Compensation | Paradigm. https://www.paradigmcorp.com/insights/burn-awareness-week-2022-paradigm/.

  3. Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).

    Google Scholar 

  4. Reynolds, D. & Kollef, M. The epidemiology and pathogenesis and treatment of pseudomonas aeruginosa infections: an update. Drugs 81, 2117–2131 (2021).

    Google Scholar 

  5. Bertesteanu, S. et al. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int. J. Pharm. 463, 119–126 (2014).

    Google Scholar 

  6. Ladhani, H. A., Yowler, C. J. & Claridge, J. A. Burn wound colonization, infection, and sepsis. Surg. Infect. 22, 44–48 (2021).

    Google Scholar 

  7. Manoharan Nair Sudha Kumari, S. & Thankappan Suryabai, X. Sensing the future─frontiers in biosensors: exploring classifications, principles, and recent advances. ACS Omega 9, 48918–48987 (2024).

    Google Scholar 

  8. Teixeira, W. et al. An all-in-one point-of-care testing device for multiplexed detection of respiratory infections. Biosens. Bioelectron. 213, 1–7 (2022).

    Google Scholar 

  9. Wang, C. et al. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today 37, 101092 (2021).

    Google Scholar 

  10. Moeinfard, T., Ghafar-Zadeh, E. & Magierowski, S. CMOS point-of-care diagnostics technologies: recent advances and future prospects. Micromachines 15, 1–28 (2024).

    Google Scholar 

  11. Arcangeli, D. et al. Smart bandaid integrated with fully textile OECT for uric acid real-time monitoring in wound exudate. ACS Sens. 8, 1593–1608 (2023).

    Google Scholar 

  12. Annemans, L. et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000-2005. Ann. Rheum. Dis. 67, 960–966 (2008).

    Google Scholar 

  13. VanDrisse, C. M., Lipsh-Sokolik, R., Khersonsky, O., Fleishman, S. J. & Newman, D. K. Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 118, e2022012118 (2021).

    Google Scholar 

  14. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science (1979) 284, 1318–1322 (1999).

    Google Scholar 

  15. Zhou, K., Kammarchedu, V., Butler, D., Soltan Khamsi, P. & Ebrahimi, A. Electrochemical sensors based on MoSx-functionalized laser-induced graphene for real-time monitoring of phenazines produced by pseudomonas aeruginosa. Adv. Health Mater. 11, 2200773 (2022).

    Google Scholar 

  16. Parsons, J. F. et al. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46, 1821–1828 (2007).

    Google Scholar 

  17. Muller, M., Li, Z. & Maitz, P. K. M. Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35, 500–508 (2009).

    Google Scholar 

  18. Truong-Bolduc, Q. C. et al. Phenazine-1 carboxylic acid of Pseudomonas aeruginosa induces the expression of Staphylococcus aureus Tet38 MDR efflux pump and mediates resistance to phenazines and antibiotics. Antimicrob. Agents Chemother. 68, e0063624 (2024).

    Google Scholar 

  19. Chukwubuikem, A., Berger, C., Mady, A. & Rosenbaum, M. A. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Microb. Biotechnol. 14, 1613–1626 (2021).

    Google Scholar 

  20. Mahmoud, N. N. et al. Investigating Inflammatory Markers in Wound Healing: Understanding Implications and Identifying Artifacts. ACS Pharm. Transl. Sci. 7, 18–27 (2024).

    Google Scholar 

  21. Huang, L. et al. Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cell Mol. Immunol. 17, 1092–1094 (2020).

    Google Scholar 

  22. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).

    Google Scholar 

  23. Kobayashi, T., Iwatani, S., Hirata, A., Yamamoto, M. & Yoshimoto, S. Rapid changes in serum IL-6 levels in preterm newborns with Gram-negative early-onset sepsis. Cytokine 138, 155371 (2021).

    Google Scholar 

  24. Battaglia, T. M. et al. Quantification of cytokines involved in wound healing using surface plasmon resonance. Anal. Chem. https://doi.org/10.1021/ac050568w (2005).

  25. Reinhart, K., Meisner, M. & Brunkhorst, F. M. Markers for sepsis diagnosis: What is useful?. Crit. Care Clin. 22, 503–519 (2006).

    Google Scholar 

  26. Bloos, F. & Reinhart, K. Rapid diagnosis of sepsis. Virulence 5, 154–160 (2014).

    Google Scholar 

  27. Bennison, L. et al. The pH of wounds during healing and infection: a descriptive literature review. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 25, 63–69 (2017).

    Google Scholar 

  28. Blicharz, T. M. et al. Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: a proof of principle. Clin. Chem. 54, 1473–1480 (2008).

    Google Scholar 

  29. Pal, J. & Pal, T. Enzyme mimicking inorganic hybrid Ni@MnO2 for colorimetric detection of uric acid in serum samples. RSC Adv. 6, 83738–83747 (2016).

    Google Scholar 

  30. Zhou, S. et al. An eco-friendly hydrophilic interaction HPLC method for the determination of renal function biomarkers, creatinine and uric acid, in human fluids. Anal. Methods 5, 1307–1311 (2013).

    Google Scholar 

  31. Jen, J.-F., Hsiao, S.-L. & Liu, K.-H. Simultaneous determination of uric acid and creatinine in urine by an eco-friendly solvent-free high performance liquid chromatographic method. Talanta 58, 711–717 (2002).

    Google Scholar 

  32. Zhao, J. A simple, rapid and reliable high performance liquid chromatography method for the simultaneous determination of creatinine and uric acid in plasma and urine. Anal. Methods 5, 6781–6787 (2013).

    Google Scholar 

  33. Villageliú, D. & Lyte, M. Dopamine production in Enterococcus faecium: a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS ONE 13, 1–10 (2018).

    Google Scholar 

  34. Costa, K. C., Moskatel, L. S., Meirelles, L. A. & Newman, D. K. PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in Mycobacterium fortuitum. J. Bacteriol. 200, 1–10 (2018).

    Google Scholar 

  35. DeBritto, S. et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  36. Dwivedi, S., AlKhedhairy, A. A., Ahamed, M. & Musarrat, J. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay. PLoS ONE 8, 1–10 (2013).

    Google Scholar 

  37. Iloabuchi, K. & Spiteller, D. Bacillus sp. G2112 detoxifies phenazine-1-carboxylic acid by N5 glucosylation. Molecules 29, 1–18 (2024).

    Google Scholar 

  38. El-Fouly, M. Z., Sharaf, A. M., Shahin, A. A. M., El-Bialy, H. A. & Omara, A. M. A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 8, 36–48 (2015).

    Google Scholar 

  39. Heydorn, A. et al. Experimental reproducibility in flow-chamber biofilms. Microbiology 146, 2409–2415 (2000).

    Google Scholar 

  40. Helle, M., Boeije, L., de Groot, E., de Vos, A. & Aarden, L. Sensitive ELISA for interleukin-6. Detection of IL-6 in biological fluids: synovial fluids and sera. J. Immunol. Methods 138, 47–56 (1991).

    Google Scholar 

  41. Luo, L., Zhang, Z., Hou, L., Wang, J. & Tian, W. The study of a chemiluminescence immunoassay using the peroxyoxalate chemiluminescent reaction and its application. Talanta 72, 1293–1297 (2007).

    Google Scholar 

  42. Ghoneim, M. T. et al. Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chem. Rev. 119, 5248–5297 (2019).

    Google Scholar 

  43. Wang, C. et al. Wound management materials and technologies from bench to bedside and beyond. Nat. Rev. Mater. 9, 550–566 (2024).

    Google Scholar 

  44. Huang, S. W., Wu, Y. F., Ahmed, T., Pan, S. C. & Cheng, C. M. Point-of-care detection devices for wound care and monitoring. Trends Biotechnol. 42, 74–90 (2024).

    Google Scholar 

  45. Youssef, K., Ullah, A., Rezai, P., Hasan, A. & Amirfazli, A. Recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds. Mater. Today Bio 22, 100764 (2023).

    Google Scholar 

  46. Pang, Q. et al. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Mater. Des. 229, 111917 (2023).

    Google Scholar 

  47. Vo, D.-K. & Trinh, K. T. L. Advances in wearable biosensors for wound healing and infection monitoring. Biosensors 15, 139 (2025).

    Google Scholar 

  48. Gupta, E. et al. Fast track diagnostic tools for clinical management of sepsis: paradigm shift from conventional to advanced methods. Diagnostics 13, 1–23 (2023).

    Google Scholar 

  49. Li, S., Renick, P., Senkowsky, J., Nair, A. & Tang, L. Diagnostics for wound infections. Adv. Wound Care 10, 317–327 (2021).

    Google Scholar 

  50. Galliani, M. et al. Flexible printed organic electrochemical transistors for the detection of uric acid in artificial wound exudate. Adv. Mater. Interfaces 7, 1–7 (2020).

    Google Scholar 

  51. Kaewpradub, K., Veenuttranon, K., Jantapaso, H., Mittraparp-arthorn, P. & Jeerapan, I. A Fully-printed wearable bandage-based electrochemical sensor with ph correction for wound infection monitoring. Nanomicro. Lett. 17, 1–21 (2025).

    Google Scholar 

  52. Dou, C. et al. Au-functionalized wrinkle graphene biosensor for ultrasensitive detection of Interleukin-6. Carbon 216, 118556 (2024).

    Google Scholar 

  53. Kumar, M. A., Jayavel, R., Mahalingam, S., Kim, J. & Atchudan, R. Detection of interleukin-6 protein using graphene field-effect transistor. Biosensors 13, 834 (2023).

    Google Scholar 

  54. Hwang, M. T. et al. Ultrasensitive detection of dopamine, IL-6 and SARS-CoV-2 proteins on crumpled graphene FET biosensor. Adv. Mater. Technol. 6, 2100712 (2021).

    Google Scholar 

  55. Meng, L., Liu, S., Borsa, B., Eriksson, M. & Mak, W. C. A conducting polymer-based array with multiplex sensing and drug delivery capabilities for smart bandages. Commun. Mater. https://doi.org/10.1038/s43246-024-00469-5 (2024).

  56. Sani, E. S. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, 1–16 (2023).

    Google Scholar 

  57. Movaghgharnezhad, S. & Kang, P. Laser-induced graphene: synthesis advances, structural tailoring, enhanced properties, and sensing applications. J. Mater. Chem. C Mater. 12, 6718–6742 (2024).

    Google Scholar 

  58. Aftab, S. et al. Laser-induced graphene for advanced sensing: comprehensive review of applications. ACS Sens. https://doi.org/10.1021/acssensors.4c01717 (2024).

  59. Dixit, N. & Singh, S. P. Laser-induced graphene (LIG) as a smart and sustainable material to restrain pandemics and endemics: a perspective. ACS Omega 7, 5112–5130 (2022).

    Google Scholar 

  60. Cheng, L. et al. Flash healing of laser-induced graphene. Nat. Commun. 15, 1–11 (2024).

    Google Scholar 

  61. Shokurov, A. V. & Menon, C. Laser-induced graphene electrodes for electrochemistry education and research. J. Chem. Educ. 100, 2411–2417 (2023).

    Google Scholar 

  62. Le, T. S. D. et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 1–39 (2022).

    Google Scholar 

  63. Zhang, Z. et al. A review of laser-induced graphene: from experimental and theoretical fabrication processes to emerging applications. Carbon 214, 118356 (2023).

    Google Scholar 

  64. Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5–12 (2014).

    Google Scholar 

  65. Kammarchedu, V., Asgharian, H., Zhou, K., Soltan Khamsi, P. & Ebrahimi, A. Recent advances in graphene-based electroanalytical devices for healthcare applications. Nanoscale 16, 12857–12882 (2024).

    Google Scholar 

  66. Brustoloni, C. J. M., Soltan Khamsi, P., Kammarchedu, V. & Ebrahimi, A. Systematic study of various functionalization steps for ultrasensitive detection of SARS-CoV-2 with direct laser-functionalized Au-LIG electrochemical sensors. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.4c09571 (2024).

    Google Scholar 

  67. Albarghouthi, F. M. et al. Addressing signal drift and screening for detection of biomarkers with carbon nanotube transistors. ACS Nano https://doi.org/10.1021/acsnano.3c11679 (2023).

    Google Scholar 

  68. Garland, N. T. et al. Wearable flexible perspiration biosensors using laser-induced graphene and polymeric tape microfluidics. ACS Appl. Mater. Interfaces 15, 38201–38213 (2023).

    Google Scholar 

  69. Camargo, J. R. et al. Development of new simple compositions of silver inks for the preparation of pseudo-reference electrodes. Biosensors 12, 761 (2022).

    Google Scholar 

  70. Zdrachek, E. & Bakker, E. Potentiometric sensor array with multi-nernstian slope. Anal. Chem. 92, 2926–2930 (2020).

    Google Scholar 

  71. U.S. Food and Drug Administration. M10 Bioanalytical Method Validation and Study Sample Analysis. FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis (2022).

  72. Huang, J., Fan, C., Ma, Y. & Huang, G. Exploring thermal dynamics in wound healing: the impact of temperature and microenvironment. Clin. Cosmet. Investig. Dermatol. 17, 1251–1258 (2024).

    Google Scholar 

  73. Asgharian, H., Kammarchedu, V., Soltan Khamsi, P., Brustoloni, C. & Ebrahimi, A. Multi-electrode extended gate field effect transistors based on laser-induced graphene for the detection of vitamin C and SARS-CoV-2. ACS Appl. Mater. Interfaces 16, 63142–63154 (2024).

    Google Scholar 

  74. Sheibani, S. et al. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun. Mater. 2, 1–10 (2021).

    Google Scholar 

  75. Asgharian, H., Khodayari, M., Rajabali, M. & Mohajerzadeh, S. Molecule-induced n-type behavior of phosphorene-based field-effect transistor for highly sensitive detection of sialic acid. Electrochim. Acta 469, 143228 (2023).

    Google Scholar 

  76. Rajabali, M. et al. Experimental and molecular dynamics studies of an ultra-fast sequential hydrogen plasma process for fabricating phosphorene-based sensors. Sci. Rep. 11, 1–13 (2021).

    Google Scholar 

  77. Könemund, L. et al. Functionalization of an extended-gate field-effect transistor (EGFET) for bacteria detection. Sci. Rep. 12, 1–10 (2022).

    Google Scholar 

  78. Kuo, P. Y., Chang, C. H., Lai, W. H. & Wang, T. H. The characteristics analysis of a microfluid-based EGFET biosensor with on-chip sensing film for lactic acid detection. Sensors 22, 5905 (2022).

    Google Scholar 

  79. Sharma, P. et al. Palladium-oxide extended gate field effect transistor as pH sensor. Mater. Lett. X 12, 100102 (2021).

    Google Scholar 

  80. Talley, K. & Alexov, E. On the pH-optimum of activity and stability of proteins. Proteins: Struct. Funct. Bioinform. 78, 2699–2706 (2010).

    Google Scholar 

  81. Ma, H., Ó’Fágáin, C. & O’Kennedy, R. Antibody stability: a key to performance—analysis, influences and improvement. Biochimie 177, 213–225 (2020).

    Google Scholar 

  82. Crone, S., Garde, C., Bjarnsholt, T. & Alhede, M. A novel in vitro wound biofilm model used to evaluate low-frequency ultrasonic-assisted wound debridement. J. Wound Care 24, 64–72 (2015).

    Google Scholar 

  83. Dang, W. et al. Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107, 192–202 (2018).

    Google Scholar 

  84. Dallinger, A., Steinwender, F., Gritzner, M. & Greco, F. Different roles of surface chemistry and roughness of laser-induced graphene: implications for tunable wettability. ACS Appl. Nano Mater. 6, 16201–16211 (2023).

    Google Scholar 

  85. Wirojsaengthong, S., Chailapakul, O., Tangkijvanich, P., Henry, C. S. & Puthongkham, P. Size-dependent electrochemistry of laser-induced graphene electrodes. Electrochim. Acta 494, 144452 (2024).

    Google Scholar 

  86. Nazeri, M., Ghalamboran, M. & Grau, G. Laser-induced graphene electrodes for organic electrochemical transistors (OECTs). Adv. Mater. Technol. 8, 1–13 (2023).

    Google Scholar 

  87. Liu, Z. et al. Dynamic laser speckle imaging meets machine learning to enable rapid antibacterial susceptibility testing (DYRAST). ACS Sens. 5, 3140–3149 (2020).

    Google Scholar 

  88. Behrent, A., Griesche, C., Sippel, P. & Baeumner, A. J. Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim. Acta 188, 159 (2021).

    Google Scholar 

  89. Kammarchedu, V., AlSiyabi, M. & Ebrahimi, A. Skin-conformal myography for real-time hand tracking using a laser-induced graphene strain sensor array. Adv. Intelli. Syst 7, 2400812 (2025).

    Google Scholar 

  90. Alnoush, W., Black, R. & Higgins, D. Judicious selection, validation, and use of reference electrodes for in situ and operando electrocatalysis studies. Chem. Catal. 1, 997–1013 (2021).

    Google Scholar 

  91. Maheshwari, P. H. Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation. Mater. Sci. Energy Technol. 2, 490–502 (2019).

    Google Scholar 

Download references