Zone-inspired hydrogel constructs promote spatially controlled chondrogenesis for osteochondral regeneration

zone-inspired-hydrogel-constructs-promote-spatially-controlled-chondrogenesis-for-osteochondral-regeneration
Zone-inspired hydrogel constructs promote spatially controlled chondrogenesis for osteochondral regeneration
  • Zurriaga Carda, J. et al. Articular cartilage regeneration with a microgel as a support biomaterial. A rabbit knee model. Biomaterials Adv. 168, 214125 (2025).

    Google Scholar 

  • Pueyo Moliner, A. et al. Restoring articular cartilage: insights from structure, composition and development. Nat. Rev. Rheumatol. 21 (5), 291–308 (2025).

    Google Scholar 

  • Zhou, J. et al. An effective approach to cartilage regeneration using antler stem cell-conditioned medium. Sci. Rep. 15 (1), 27971 (2025).

    Google Scholar 

  • Kalairaj, M. S. et al. Intra-articular injectable biomaterials for cartilage repair and regeneration. Adv. Healthc. Mater. 13 (17), 2303794 (2024).

    Google Scholar 

  • Li, H. et al. Cartilage lacuna-biomimetic hydrogel microspheres endowed with integrated biological signal boost endogenous articular cartilage regeneration. Bioactive Mater. 41, 61–82 (2024).

    Google Scholar 

  • Li, C. S. et al. Ultramodern natural and synthetic polymer hydrogel scaffolds for articular cartilage repair and regeneration. Biomed. Eng. Online. 24 (1), 1–26 (2025).

    Google Scholar 

  • Yang, Y. et al. Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration. Biomaterials 317, 123066 (2025).

    Google Scholar 

  • Wang, C. et al. Injectable tissue-engineered human cartilage matrix composite fibrin glue for regeneration of articular cartilage defects. Biomaterials Adv. 167, 214095 (2025).

    Google Scholar 

  • Bordbar, S. et al. Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor. Sci. Rep. 14 (1), 11991 (2024).

    Google Scholar 

  • Hashemi-Afzal, F. et al. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioactive Mater. 43, 1–31 (2025).

    Google Scholar 

  • Kang, Y., Guan, Y. & Li, S. Innovative hydrogel solutions for articular cartilage regeneration: a comprehensive review. Int. J. Surg. 110 (12), 7984–8001 (2024).

    Google Scholar 

  • Zhang, H. et al. Monophasic hyaluronic acid-silica hybrid hydrogels for articular cartilage applications. Biomaterials Adv. 167, 214089 (2025).

    Google Scholar 

  • Lin, L. et al. Alkaline phosphatase-instructed self-assembling supramolecular glucosamine hydrogel for osteoarthritis treatment. Biomaterials Adv. 178, 214451 (2026).

    Google Scholar 

  • He, S. et al. Construction of a dual-component hydrogel matrix for 3D biomimetic skin based on photo-crosslinked chondroitin sulfate/collagen. Int. J. Biol. Macromol. 254, 127940 (2024).

    Google Scholar 

  • Xue, H. et al. Polydopamine-coated chondroitin sulfate methacryloyl multifunctional microspheres for wound treatment. Int. J. Biol. Macromol. 280, 136087 (2024).

    Google Scholar 

  • Murphy, C. A., Serafin, A. & Collins, M. N. Development of 3D printable gelatin methacryloyl/chondroitin sulfate/hyaluronic acid hydrogels as implantable scaffolds. Polymers, 16(14), 1958 (2024).

  • Mistretta, K. S. et al. Local sustained Dinutuximab delivery and release from methacrylated chondroitin sulfate. J. Biomedical Mater. Res. Part. A. 113 (1), e37803 (2025).

    Google Scholar 

  • Xu, W. et al. Engineered Biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression. Biomaterials Adv. 153, 213567 (2023).

    Google Scholar 

  • Klara, J. et al. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int. J. Biol. Macromol. 271, 132675 (2024).

    Google Scholar 

  • Chen, R. et al. Facile synthesis of mechanically robust and injectable tetra-polyethylene glycol/methacrylate Chitosan double-network hydrogel cartilage repair. Polym. Test. 133, 108410 (2024).

    Google Scholar 

  • Golebiowska, A. A. et al. Engineered osteochondral scaffolds with bioactive cartilage zone for enhanced articular cartilage regeneration. Ann. Biomed. Eng. 53 (3), 597–611 (2025).

    Google Scholar 

  • Hu, J. et al. Zonal characteristics of collagen ultrastructure and responses to mechanical loading in articular cartilage. Acta Biomater. 195, 104–116 (2025).

    Google Scholar 

  • Taghizadeh, S. et al. Magnetic hydrogel applications in articular cartilage tissue engineering. J. Biomedical Mater. Res. Part. A. 112 (2), 260–275 (2024).

    Google Scholar 

  • Wu, Y. et al. Improved articular cartilage repair with stratified zonal chondrocyte implantation. Am. J. Sports Med. 53 (9), 2094–2106 (2024).

    Google Scholar 

  • Li, G. et al. Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin. Med. J. 138 (12), 1399–1410 (2025).

    Google Scholar 

  • Cao, F., Li, P. & Guo, L. Bibliometric and visualization analysis of superficial zone of articular cartilage from 2000 to 2024. Osteoarthr. Cartil. 33 (6), 777 (2025).

    Google Scholar 

  • Ye, T. et al. Lysosomal destabilization: a missing link between pathological calcification and osteoarthritis. Bioactive Mater. 34, 37–50 (2024).

    Google Scholar 

  • Wu, X. et al. A 3D printed multilayer biomimetic scaffold with a gradient-oriented structure for articular cartilage repair. J. Mater.Chem. B. 13, 7728–7743 (2025).

  • Silva, B. et al. Toward integrative Biomechanical models of osteochondral tissues: A multilayered perspective. Bioengineering 12 (6), 649 (2025).

    Google Scholar 

  • Nikhil, A. et al. Multilayered cryogel enriched with exosomes regenerates and maintains cartilage architecture and phenotype in goat osteochondral injuries. ACS Appl. Mater. Interfaces. 16 (47), 64505–64521 (2024).

    Google Scholar 

  • Moradian, A. et al. Photo- and thermal-crosslinked GelMA/chitosan hydrogels: A novel approach to enhanced mechanical and biological properties. Carbohydr. Polym. Technol. Appl. 10, 100834 (2025).

    Google Scholar 

  • Raikov, B. et al. Methods for determining the molecular composition of knee joint structures in osteoarthritis: collagen, proteoglycans and water content: a systematic review. Collagen Leather. 6 (1), 30 (2024).

    Google Scholar 

  • Çelik, E. et al. Calcified and mechanically debilitated three-dimensional hydrogel environment induces hypertrophic trend in chondrocytes. J. Bioactive Compatible Polym. 31 (5), 498–512 (2016).

    Google Scholar 

  • Peters, J. R. et al. Tissue growth as a mechanism for collagen fiber alignment in articular cartilage. Sci. Rep. 14 (1), 31121 (2024).

    Google Scholar 

  • Singh, J. et al. Biomimetic double network hydrogels of chondroitin sulfate and synthetic polypeptides for cartilage tissue engineering. Biomaterials Sci. 13, 4211–4231 (2025).

  • Park, S. et al. Polydeoxynucleotide-loaded visible light photo-crosslinked gelatin methacrylate hydrogel: approach to accelerating cartilage regeneration. Gels 11 (1), 42 (2025).

    Google Scholar 

  • Yu, J. et al. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int. J. Biol. Macromol. 265, 130709 (2024).

    Google Scholar 

  • Fowler, M. et al. Guiding vascular infiltration through architected GelMA/PEGDA hydrogels: an in vivo study of channel diameter, length, and complexity. Biomaterials Sci. 13 (11), 2951–2960 (2025).

    Google Scholar 

  • Golini, C. et al. Depth-wise multiparametric assessment of articular cartilage layers with single‐sided NMR. NMR Biomed. 38 (1), e5287 (2025).

    Google Scholar 

  • Beck, E. C. et al. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 38, 94–105 (2016).

    Google Scholar 

  • Gorroñogoitia, I. et al. The effect of Alginate/Hyaluronic acid proportion on Semi-Interpenetrating hydrogel properties for articular cartilage tissue engineering. Polymers 17 (4), 528 (2025).

    Google Scholar 

  • Liang, J. et al. Hybrid hydrogels based on Methacrylate-Functionalized gelatin (GelMA) and synthetic polymers. Biomedical Mater. Devices. 1 (1), 191–201 (2023).

    Google Scholar 

  • Rodrigues, L. C. et al. 3D tubular constructs based on natural polysaccharides and Recombinant polypeptide synergistic blends as potential candidates for blood vessel solutions. Int. J. Biol. Macromol. 310, 143084 (2025).

    Google Scholar 

  • Dabaja, R. et al. Spatially distributed and interconnected porous architectures for dental implants. Int. J. Implant Dentistry. 11 (1), 30 (2025).

    Google Scholar 

  • Salehi, M. et al. Achieving biomimetic porosity and strength of bone in magnesium scaffolds through binder jet additive manufacturing. Biomaterials Adv. 166, 214059 (2025).

    Google Scholar 

  • Mukasheva, F. et al. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front. Bioeng. Biotechnol. 12, 1444986 (2024).

    Google Scholar 

  • Chonanant, C. et al. Biocomposite scaffolds based on Chitosan extraction from shrimp shell waste for cartilage tissue engineering application. ACS Omega. 9 (38), 39419–39429 (2024).

    Google Scholar 

  • Welsh, B. L. & Sikder, P. Advancements in cartilage tissue engineering: A focused review. J. Biomedical Mater. Res. Part. B: Appl. Biomaterials. 113 (1), e35520 (2025).

    Google Scholar 

  • Gonella, S. et al. Fabrication and characterization of porous PEGDA hydrogels for articular cartilage regeneration. Gels 10 (7), 422 (2024).

    Google Scholar 

  • Kurian, A. G. et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioactive Mater. 8, 267–295 (2022).

    Google Scholar 

  • Wang, H. et al. Comparing the effect of mechanical loading on deep and superficial cartilage using quantitative Ute mri. J. Magn. Reson. Imaging. 59 (6), 2048–2057 (2024).

    Google Scholar 

  • Choi, H., Choi, W. S. & Jeong, J. O. A review of advanced hydrogel applications for tissue engineering and drug delivery systems as biomaterials. Gels 10 (11), 693 (2024).

    Google Scholar 

  • Mow, V. C., Ratcliffe, A. & Robin Poole, A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13 (2), 67–97 (1992).

    Google Scholar 

  • Dong, D. L. & Jin, G. Z. Targeting chondrocyte hypertrophy as strategies for the treatment of osteoarthritis. Bioengineering 12 (1), 77 (2025).

    Google Scholar 

  • Pan, X. et al. Biomimetic vascular scaffolds via hybrid 3D printing-phase separation for vascularized cardiac tissue with enhanced perfusion and maturation. Biomaterials Sci. 13 (17), 4803–4815 (2025).

    Google Scholar 

  • Cai, H. et al. Vascular network-inspired diffusible scaffolds for engineering functional midbrain organoids. Cell. Stem Cell. 32 (5), 824–837 (2025). e5.

    Google Scholar 

  • Hudson, A. R. et al. Enhancing viability in static and perfused 3D tissue constructs using sacrificial gelatin microparticles. ACS Biomaterials Sci. Eng. 11 (5), 2888–2897 (2025).

    Google Scholar 

  • Owida, H. A. et al. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. J. Royal Soc. Interface. 15 (143), 20180310 (2018).

    Google Scholar 

  • Ghadirian, S., Shariati, L. & Karbasi, S. Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: physicochemical and biological properties. Biomaterials Adv. 172, 214249 (2025).

    Google Scholar 

  • Amanatullah, D. F., Yamane, S. & Reddi, A. H. Distinct patterns of gene expression in the superficial, middle and deep zones of bovine articular cartilage. J. Tissue Eng. Regen. Med. 8 (7), 505–514 (2014).

    Google Scholar 

  • Liu, Y. et al. Bioprinted biomimetic hydrogel matrices guiding stem cell aggregates for enhanced chondrogenesis and cartilage regeneration. J. Mater. Chem. B. 12 (22), 5360–5376 (2024).

    Google Scholar 

  • Zheng, K. et al. Co-culture pellet of human wharton’s jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res. Ther. 13 (1), 386 (2022).

    Google Scholar 

  • Zhang, L. et al. Multileveled hierarchical hydrogel with continuous biophysical and biochemical gradients for enhanced repair of full-thickness osteochondral defect. Adv. Mater. 35 (19), 2209565 (2023).

    Google Scholar 

  • Wu, J. et al. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed. Mater. 17 (1), 014105 (2021).

    Google Scholar 

  • Decarli, M. C. et al. Bioprinting of stem cell spheroids followed by post-printing chondrogenic differentiation for cartilage tissue engineering. Adv. Healthc. Mater. 12 (19), 2203021 (2023).

    Google Scholar